## ON THE STRUCTURE OF "TETRAPHENYLDIPYRANYL ETHER"

A. I. PYSHCHEV, N. G. BOKII<sup>\*</sup> and YU. T. STRUCHKOV Institute of Organo-Element Compounds, Academy of Sciences, Moscow, U.S.S.R.

(Received in the UK 8 November 1976; Accepted for publication 20 February 1978)

Abstract—The reaction product of 2,6-diphenylpyrylium perchlorate with water in presence of bases, which earlier was assigned the structure of  $\alpha, \alpha', \alpha'', \alpha'''$ -tetraphenyl- $\gamma, \gamma'$ -dipyranyl ether, is identified now as 2,6-dipyranylidene-

1,5-diphenylpentenedione-1,5 from its chemical and spectral properties and by X-ray analysis.

Crystals are monoclinic, space group P2<sub>1</sub>/n with Z = 4 in a unit cell of dimensions a = 24.088, b = 9.323, c = 11.289 Å,  $\beta$  = 95.30°. The structure was solved by direct method and refined isotropically to R = 0.126 for 2423 reflections.

It was reported earlier<sup>1</sup> that interaction of 2,6-diphenylpyrylium perchlorate (1) with water in presence of bases gave moderate yields of the product "Z", which was assigned the structure of  $\alpha, \alpha', \alpha'', \alpha'''$  - tetraphenyl -  $\gamma, \gamma'$  dipyranyl ether (2). This assignment was done on the basis of elemental analysis and by analogy with similar derivatives of cyclopropenylium<sup>2</sup> and tropylium<sup>3</sup> formed under like conditions. These were the only arguments in favour of the proposed structure.<sup>4</sup>

However the ether formulation 2 is in poor agreement with the intense red colour of "Z" and the strong band at  $1650 \text{ cm}^{-1}$  in its IR spectrum hardly could be assigned to vibrations of double C-C bonds of the pyrane cycle. Moreover the treatment of dipyranyl ether 2 by perchloric acid would lead to the initial pyrylium salt 1. However this reaction gave rise to formation of a new perchlorate (3).<sup>1</sup>

The molecular weight of "Z" determined by measurement of condensation thermal effects (CHCl<sub>3</sub>, 30°C) is equal to  $466 \pm 10$  and in fact corresponds to a dimeric structure. The NMR spectrum of "Z" in CDCl<sub>3</sub> was rather complicated and we could not interpret it unequivocally.

The NMR spectrum of perchlorate 3 in CF<sub>3</sub>COOH has two one-proton doublets centered at  $\delta = 8.82$  and 8.25 ppm (J = 10 Hz), i.e. in the same positions as signals of  $\beta$ ,  $\gamma$ -protons in spectra of 2,3,6-trisubstituted pyrylium salts. The next two-proton singlet at  $\delta = 8.00$  ppm resembles a singlet of two  $\beta$ -protons of 2,4,6-trisubstituted pyrylium cation.<sup>3</sup>

At  $\delta = 7.75-7.00$  ppm the multiplet of 20 aromatic protons is situated. Thus on the basis of the NMR spectrum the structure of 3 was shown to be a combination of 2.3.6- and 2.4.6-trisubstituted pyrylium salts.

By treatment with water or bases the bisperchlorate 3 is transformed into "Z". If the structure 3 is correct then "Z" must have a C-C bond between two pyrane rings.

For elucidation the structure of "Z" it was necessary to determine a position of the third O atom, the presence of which followed from the results of elemental analysis. Taking into account an easiness of transformation "Z" $\neq$ 3 at least two structures (4 as well as 5) could be proposed. The structure 4 could be realized if an OH added to  $\gamma$ -position of a pyrylium ring with subsequent splittingoff of a proton. The structure 5 could be formed by an initial ring opening of the more electrophilic 2,3,6-trisubstituted pyrylium cation through a OH addition in an  $\alpha$ -position.



For a definite determination of the structure of "Z" we undertook its X-ray study.

Crystals of "Z" are monoclinic, a = 24.088(2), b = 9.323(5), c = 11.289(1)Å,  $\beta = 95.30(1)^\circ$ ,  $D_m = 1.257$ ,  $D_C = 1.265$  g.cm<sup>-1</sup>, Z = 4, space group P2<sub>1</sub>/n. Intensities of reflections were measured with an automatic four-circle Hilger & Watts diffractometer (Cu radiation, graphite monochromator,  $\omega$  scan,  $\theta \le 57^\circ$ ). Experimental technique and programmes used for subsequent calculations were the same as described in Ref. 6. The structure was solved by the direct method using the programme<sup>7</sup> and refined by the least squares method in isotropic approximation to R = 0.126 for 2423 reflections.

The structure of the molecule found is shown in Fig. 1. bond lengths and angles are given in the Table. One of the pyranyl rings (A) enters into the molecule in its invariable form. However the other pyranyl residue is represented by acyclic diketo-form [O(3)-C(28)-C(18)-C(19)-C(20)-C(21)-O(2)] joined by its  $\beta$ -C atom C(18) to the  $\gamma$ -position of pyranyl cycle. Thus the compound studied has in fact the structure 5.

With the exception of the benzoyl group at C(18) the molecule is approximately planar. The phenyl rings B and C make with the plane of the pyranyl ring A angles equal to 6.8 and 2.9° respectively. The plane of the side chain C(3)-C(18)-C(19)-C(20)-C(21)-O(2)-C(22) forms with the ring A and the phenyl ring D angles of 5.0 and 3.4° respectively. This conformation causes a strong distortion of exocyclic angles at C(1) and C(5). It contains also a large number of intramolecular non-bonded distances which are shorter than corresponding sums of van-der-Waals radii: C...C 2.91-2.97, C...O 2.69-2.79 Å. The preservation of so considerable steric strains which

<sup>&</sup>lt;sup>4</sup>The same compound was also described as 1,5,9 - tripbenyl - 6 benzoyl - 2,4,6 - triene - 1,9 - dione.<sup>4</sup> The reaction scheme proposed by these authors involves a crotonic condensation of two molecules of dibenzoylpropene.



|                                                                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8     | 19.20<br>19.6(7)<br>19.6(6)<br>119.6(6)<br>119.6(6)<br>119.6(6)<br>119.9(6)<br>119.9(6)<br>119.9(7)<br>119.9(7)<br>119.9(7)<br>119.9(7)<br>119.9(7)<br>119.9(7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Table 1. Bond lengths (d, A) and bond angles ( $\omega^{\circ}$ ) | đ     | L.366(12)<br>L.366(12)<br>L.381(11)<br>L.414(11)<br>L.423(10)<br>L.423(10)<br>L.423(12)<br>L.382(12)<br>L.382(12)<br>L.382(12)<br>L.382(12)<br>L.388(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Atoms | $\begin{array}{c} C(2)-C(26)-C(27)\\ C(23)-C(26)-C(27)-C(27)\\ C(23)-C(28)-C(27)-C(27)-C(27)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28)-C(28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                   | Atoms | C(23) - C(23)<br>C(23) - C(23) - C(23)<br>C(23) - C(23) -                                                                                                                                                                                                                                                                             | 3     | 120.5(6)<br>122.5(6)<br>117.055<br>127.6(6)<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>119.055<br>120.4(8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                   | q     | L.401(11)<br>L.407(9)<br>L.386(8)<br>L.386(8)<br>L.386(9)<br>L.486(9)<br>L.486(9)<br>L.486(9)<br>L.486(9)<br>L.486(10)<br>L.486(10)<br>L.402(11)<br>L.402(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Atoms | (1)-C(18)-C(19)-C(19)<br>(3)-C(18)-C(19)-C(28)<br>(3)-C(18)-C(19)-C(28)<br>(18)-C(19)-C(20)-C(21)<br>(19)-C(20)-C(21)-C(22)<br>(20)-C(21)-C(22)-C(21)<br>(21)-C(22)-C(22)<br>(21)-C(22)-C(22)<br>(23)-C(24)-C(22)<br>(23)-C(24)-C(22)<br>(23)-C(24)-C(23)<br>(24)-C(25)-C(26)<br>(24)-C(25)-C(26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                   | Atoms | C(16)-C(17)<br>C(17)-C(18)<br>C(17)-C(18)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)<br>C(19)-C(19)-C(19)<br>C(19)-C(19)-C(19)<br>C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-C(19)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | а     | 123.66<br>123.37)<br>123.37)<br>123.37)<br>123.37)<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.56<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.57<br>123.5                                                                                                                                                   |
|                                                                   | p     | · 1.402(10)<br>1.417(11)<br>1.417(11)<br>1.378(12)<br>1.377(10)<br>1.377(10)<br>1.397(11)<br>1.397(11)<br>1.377(11)<br>1.377(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Atoms | C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19)<br>C(19) |
|                                                                   | Atoms | C(6)-C(7)<br>C(7)-C(8)<br>C(7)-C(8)<br>C(9)-C(10)<br>C(10)-C(10)<br>C(11)-C(6)<br>C(11)-C(13)<br>C(13)-C(14)<br>C(13)-C(14)<br>C(15)-C(16)<br>C(15)-C(16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | CG-CC<br>CG-CC<br>CG-CC<br>CG-CC<br>CG-CC<br>CG-CC<br>CG-CC<br>CC<br>CG-CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC<br>CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                   | đ     | 1.364(8)<br>(1.370(8)<br>(1.370(8)<br>(1.370(8)<br>(1.344(9)<br>(1.442(9)<br>(1.442(9)<br>(1.442(9)<br>(1.442(9)<br>(1.442(9)<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9))<br>(1.442(9)))<br>(1.442(9))<br>(1.442(9)) | 3     | 119.005<br>122.1(6)<br>122.1(6)<br>123.1(6)<br>123.5(6)<br>114.5(5)<br>125.3(6)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.5(5)<br>112.                                                                                                                                                                                                                                                                                                                                                   |
|                                                                   | Atoms | 0(1)-C(1)<br>0(1)-C(2)<br>0(2)-C(2)<br>0(2)-C(2)<br>C(1)-C(2)<br>C(1)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)<br>C(2)-C(2)-C(2)<br>C(2)-C(2)-C(2)<br>C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Atoms | C(S)-O(1)-C(1)<br>O(1)-C(1)-C(2)<br>O(1)-C(1)-C(2)<br>O(1)-C(1)-C(3)-C(3)<br>C(3)-C(3)-C(4)-C(3)<br>C(3)-C(4)-C(3)-C(4)<br>C(3)-C(1)-C(6)-C(3)<br>O(1)-C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)-C(6)-C(1)<br>C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(6)-C(1)-C(1)-C(6)-C(1)-C(1)-C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| angles  |
|---------|
| pooq    |
| and     |
| R       |
| Ġ,      |
| lengths |
| Bond    |
|         |
| Table   |

could be well diminished by mutual rotation of molecule fragments (phenyl groups in the first place) indicates a strong conjugation in the molecule.

The C(2)-C(3) 1.44 and C(3)-C(4) 1.45 Å bonds are shorter than the standard  $C(sp^2)-C(sp^2)$  bond length (1.48 Å<sup> $\bullet$ </sup>). The C(1)-O(1) and C(5)-O(1) bond lengths of 1.36 and 1.37 Å respectively are equal to the C-O bond distance in furan (1.37 Å<sup>9</sup>). These details of bond lengths distribution also testify to a considerable conjugation in a pyranyl cycle although lesser than in the completely delocalized system of 2,4,6-triphenylpyrylium cation. Therefore the structure of the molecule "Z" is better described by the formula 5 with pyranyl cycle. However bond lengths both in this cycle and in the side chain indicate some contribution of the betaine structure 5a with a pyrylium cycle. An indirect confirmation of this conclusion is supplied by a molecular packing in crystals. The atom O(2) is situated approximately over the center of the pyranyl ring of the neighbouring molecule: distances from O(2) to O(1), C(1)...C(5) are equal to 3.37, 3.40, 3.51, 3.59, 3.58 and 3.44 Å respectively.

Thus the X-ray structural study has shown that contrary to cyclopropenylium and tropilium derivatives the perchlorate of 2,6-diphenylpyrylium interacts with water in presence of bases with formation of 2,6diphenylpyranylidene - 1,5 - diphenylpentenedione - 1,5. Earlier such transformations were not known among oxonium compounds.

Acknowledgement—The authors acknowledge a constant interest to this study and a fruitful discussion of its results by Prof. G. N. Dorofeenko and Dr. L. Yu. Ukhin.

## REFERENCES

- <sup>1</sup>S. V. Krivun and S. V. Dulskaya, Khimiya Geterocycl. Soed. 1454 (1970).
- <sup>2</sup>A. Krebs, Angew. Chem. 77, 10 (1965).
- <sup>3</sup>W. Doering and E. Knox, J. Am. Chem. Soc. 79, 352 (1957).
- <sup>4</sup>H. Stetter and A. Reischl, Chem. Ber. 93, 1253 (1960).
- <sup>3</sup>A. F. Balaban, G. R. Bedford and A. R. Katrizki, J. Chem. Soc. 1646 (1964).
- <sup>6</sup>N. G. Bokii, Yu. T. Struchkov, D. N. Kravtsov and E. M. Rokhlina, Zh. Strukt. Khim. 14, 291 (1973).
- <sup>7</sup>V. I. Andrianov, B. L. Tarnopolskii and R. P. Shibaeva, *Ibid.* 10, 116 (1969).
- <sup>8</sup>Tables of Interatomic Distances and Configuration in Molecules and Ions, (Edited by L. E. Sutton) Special publication No 11, The Chemical Society, Burlington House, London (1958).
- <sup>9</sup>B. Bak, L. Hausen and J. Rastrup-Andersen, Disc. Faraday Soc. 19, 30 (1955).
- <sup>10</sup>T. Tamamura, T. Yamane, N. Yasuoka and N. Kasai, Bull. Chem. Soc. Japan 47, 832 (1974).